login
Expansion of 1/Product_{m>=1} (1 - m*q^m)^23.
2

%I #14 Aug 16 2023 08:12:02

%S 1,23,322,3427,30429,236371,1654137,10633291,63665679,358718373,

%T 1917142690,9779753341,47860052964,225631690224,1028303816386,

%U 4543788611823,19515830222431,81653870900161,333437792190697

%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^23.

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 23, g(n) = n. - _Seiichi Manyama_, Aug 16 2023

%H Seiichi Manyama, <a href="/A022747/b022747.txt">Table of n, a(n) for n = 0..5000</a>

%F a(0) = 1; a(n) = (23/n) * Sum_{k=1..n} A078308(k) * a(n-k). - _Seiichi Manyama_, Aug 16 2023

%Y Column k=23 of A297328.

%Y Cf. A078308.

%K nonn

%O 0,2

%A _N. J. A. Sloane_