This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022727 Expansion of Product_{m>=1} (1-m*q^m)^-3. 2
 1, 3, 12, 37, 114, 312, 855, 2178, 5496, 13302, 31719, 73482, 168086, 375984, 830976, 1805887, 3880746, 8225460, 17262440, 35809446, 73621776, 149875003, 302635110, 605861124, 1204043358, 2374645746 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 3, g(n) = n. - Seiichi Manyama, Dec 29 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 FORMULA G.f.: exp(3*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 07 2018 MATHEMATICA With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^-3, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 25 2018 *) PROG (PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1-n*q^n)^-3)) \\ G. C. Greubel, Jul 25 2018 (MAGMA) n:=50; R:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^3:m in [1..n]])); // G. C. Greubel, Jul 25 2018 CROSSREFS Column k=3 of A297328. Sequence in context: A083215 A211958 A255610 * A290930 A264423 A240193 Adjacent sequences:  A022724 A022725 A022726 * A022728 A022729 A022730 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 13:29 EDT 2019. Contains 321330 sequences. (Running on oeis4.)