login
A022700
Expansion of Product_{m>=1} 1/(1 + m*q^m)^8.
2
1, -8, 20, -16, 58, -288, 424, -464, 2035, -4816, 7364, -15008, 32030, -69152, 135352, -217840, 460537, -1012000, 1704176, -3043120, 6200086, -11737792, 21029184, -37602016, 70312646, -132822480, 235883988, -412277440
OFFSET
0,2
LINKS
FORMULA
G.f.: exp(-8*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^-8, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 19 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^-8)) \\ G. C. Greubel, Jul 19 2018
CROSSREFS
Column k=8 of A297325.
Sequence in context: A128909 A115147 A302241 * A214457 A205226 A205318
KEYWORD
sign
STATUS
approved