%I #16 Sep 08 2022 08:44:46
%S 1,24,324,3248,26802,191904,1230824,7221744,39342783,201199888,
%T 974039652,4493483424,19859122142,84451085664,346817307672,
%U 1379695128080,5330825817507,20050294307376,73556403409336
%N Expansion of Product_{m>=1} (1+m*q^m)^24.
%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -24, g(n) = -n. - _Seiichi Manyama_, Dec 29 2017
%H Seiichi Manyama, <a href="/A022652/b022652.txt">Table of n, a(n) for n = 0..1000</a>
%t With[{nmax=50}, CoefficientList[Series[Product[(1+m*q^m)^24,{m,1,nmax}],{q,0,nmax}],q]] (* _G. C. Greubel_, Jul 18 2018 *)
%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^24)) \\ _G. C. Greubel_, Jul 18 2018
%o (Magma) Coefficients(&*[(1+m*x^m)^24:m in [1..40]])[1..50] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 18 2018
%Y Column k=24 of A297321.
%K nonn
%O 0,2
%A _N. J. A. Sloane_