login
A022644
Expansion of Product_{m>=1} (1 + m*q^m)^16.
3
1, 16, 152, 1120, 6972, 38368, 191968, 889184, 3862214, 15881616, 62275840, 234205472, 848652120, 2974133152, 10112507808, 33448941824, 107874784017, 339879773648, 1047953793136, 3166817754880, 9391718326404, 27366626142688, 78435144301696, 221322772710464, 615375631077094
OFFSET
0,2
LINKS
MAPLE
[seq(coeff(series(mul((1+m*q^m)^(16), m=1..100), q, 101), q, j), j=0..25)]; # Muniru A Asiru, Feb 18 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^16, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 17 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^16)) \\ G. C. Greubel, Feb 17 2018
(Magma) Coefficients(&*[(1+m*x^m)^16:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 17 2018
CROSSREFS
Column k=16 of A297321.
Sequence in context: A225915 A023014 A073384 * A297090 A279323 A224737
KEYWORD
nonn
STATUS
approved