%I #16 Sep 08 2022 08:44:46
%S 1,12,90,544,2823,13116,55982,222936,838011,2998896,10282986,33959016,
%T 108458924,336141084,1013801700,2982628712,8577246237,24152726184,
%U 66699488360,180885417408,482312100000,1265779076680,3272696917782,8343402502128,20989675199987,52143220175940
%N Expansion of Product_{m>=1} (1 + m*q^m)^12.
%H G. C. Greubel, <a href="/A022640/b022640.txt">Table of n, a(n) for n = 0..1000</a>
%p [seq(coeff(series(mul((1+m*q^m)^(12), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018
%t With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^12, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *)
%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^12)) \\ _G. C. Greubel_, Feb 17 2018
%o (Magma) Coefficients(&*[(1+m*x^m)^12:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018
%Y Column k=12 of A297321.
%K nonn
%O 0,2
%A _N. J. A. Sloane_