login
A022639
Expansion of Product_{m>=1} (1 + m*q^m)^11.
2
1, 11, 77, 440, 2167, 9592, 39127, 149237, 538329, 1851674, 6111171, 19448573, 59922709, 179331603, 522723740, 1487454914, 4140279660, 11292030255, 30221623905, 79475723767, 205600559461, 523762010695, 1315113742769, 3257405396388, 7964974336693, 19239590761567
OFFSET
0,2
LINKS
MAPLE
[seq(coeff(series(mul((1+m*q^m)^(11), m=1..100), q, 101), q, j), j=0..25)]; # Muniru A Asiru, Feb 18 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^11, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 17 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^11)) \\ G. C. Greubel, Feb 17 2018
(Magma) Coefficients(&*[(1+m*x^m)^11:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 17 2018
CROSSREFS
Column k=11 of A297321.
Sequence in context: A303103 A258459 A320547 * A000589 A211830 A322877
KEYWORD
nonn
STATUS
approved