login
A022612
Expansion of Product_{m>=1} (1+q^m)^(-17).
2
1, -17, 136, -697, 2669, -8517, 24361, -64549, 160140, -375564, 842078, -1818932, 3800537, -7709449, 15239497, -29440226, 55697542, -103382254, 188589925, -338602243, 599066162, -1045509435, 1801660255, -3068201310
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (-1)^n * 17^(1/4) * exp(Pi*sqrt(17*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(17/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^17, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
CROSSREFS
Sequence in context: A196783 A047642 A010933 * A205815 A060220 A041550
KEYWORD
sign
STATUS
approved