login
A022584
Expansion of Product_{m>=1} (1+x^m)^19.
2
1, 19, 190, 1349, 7676, 37278, 160417, 626924, 2263698, 7647652, 24405633, 74120672, 215505334, 602763220, 1628328880, 4262845643, 10845598563, 26882001287, 65048680364, 153950675585, 356936640088, 811869015895, 1813912504439, 3985419541978, 8619872682020, 18369414409148
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (19/3)^(1/4) * exp(Pi * sqrt(19*n/3)) / (2048 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (19/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 04 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^19, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^19)) \\ G. C. Greubel, Feb 25 2018
(Magma) Coefficients(&*[(1+x^m)^19:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
Column k=19 of A286335.
Sequence in context: A162639 A247614 A010971 * A140569 A142268 A107695
KEYWORD
nonn
STATUS
approved