login
A022583
Expansion of Product_{m>=1} (1+x^m)^18.
2
1, 18, 171, 1158, 6309, 29430, 121962, 460008, 1605996, 5254334, 16260867, 47949804, 135509922, 368764290, 970099191, 2475106170, 6141671649, 14856839874, 35107961175, 81189855828, 184033842021, 409446105486, 895231350108, 1925717858910, 4079428991751, 8518121246538
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (3/2)^(1/4) * exp(Pi * sqrt(6*n)) / (1024 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (18/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 04 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^18, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^18)) \\ G. C. Greubel, Feb 25 2018
(Magma) Coefficients(&*[(1+x^m)^18:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
Column k=18 of A286335.
Sequence in context: A010970 A126920 A341228 * A321951 A227023 A239581
KEYWORD
nonn
STATUS
approved