login
Number of connected regular linearized chord diagrams of degree n.
1

%I #19 Nov 03 2017 03:45:08

%S 1,1,1,2,5,16,63,293,1561,9321,61436,442134,3446077,28905485,

%T 259585900,2485120780,25267283367,271949606805,3089330120711,

%U 36943477086287,463943009361687,6105064699310785,84011389289865102

%N Number of connected regular linearized chord diagrams of degree n.

%H Gheorghe Coserea, <a href="/A022494/b022494.txt">Table of n, a(n) for n = 0..202</a>

%H A. Stoimenow, <a href="http://www.math.toronto.edu/stoimeno/bound.ps.gz">Enumeration of chord diagrams and an upper bound for Vassiliev invariants</a>, J. Knot Theory Ramifications, 7 (1998), no. 1, 93-114. [broken link], <a href="http://dx.doi.org/10.1142/S0218216598000073">[DOI]</a>

%H Don Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/">Vassiliev invariants and a strange identity related to the Dedekind eta-function</a>, Topology, vol.40, pp.945-960 (2001); see p.955.

%o (PARI)

%o A137251_seq(N) = {

%o my(x='x + O('x^(N+1)), t='t+O('t^(N+2)), q=1-x, z=1/t-1, p=vector(N+1));

%o p[1]=1; for (n=1, #p-1, p[n+1] = p[n] * (1-q^n)/(1+z*q^n));

%o apply(p->Vecrev(p), Vec((apply(p->Pol(p,'t), vecsum(p)/(1+z))-'t)/'t^2));

%o };

%o A022494_seq(N) = {

%o my(s = 't+'t^2*'x*Ser(apply(v->Polrev(v,'t), A137251_seq(N))),

%o r = Ser(vector(N+1, n, subst(polcoeff(s, n-1, 't), 'x, 'u + O('u^(N+1)))),'t));

%o Vec(1+subst(Pol(t/serreverse(r) - 1,'t),'t,1));

%o };

%o A022494_seq(22) \\ _Gheorghe Coserea_, Nov 01 2017

%Y Cf. A137251.

%K nonn

%O 0,4

%A Alexander Stoimenow (stoimeno(AT)math.toronto.edu)