This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022449 c(p(n)) where p(k) is k-th prime including p(1)=1 and c(k) is k-th composite number. 9
 4, 6, 8, 10, 14, 20, 22, 27, 30, 35, 44, 46, 54, 58, 62, 66, 75, 82, 85, 92, 96, 99, 108, 114, 120, 129, 134, 136, 142, 144, 148, 166, 171, 178, 182, 194, 196, 204, 210, 215, 221, 230, 232, 245, 247, 252, 254, 268, 285, 289, 291, 296, 302, 304, 318 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) U A050435(n) = A002808(n), a(n+1) U A175251(n) = A002808(n) for n >= 1. a(n) = A065858(n-1) = composites (A002808) with prime (A000040) subscripts for n >=2. [From Jaroslav Krizek, Mar 13 2010] REFERENCES C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol. 45 p 157 1997. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 C. Kimberling, Interspersions FORMULA a(n) = A002808(A008578(n)). - Jaroslav Krizek, Mar 13 2010 EXAMPLE a(5) = 14 because a(5) = composite(noncomposite(5)) = composite(7) =14. Jaroslav Krizek, Mar 13 2010 MAPLE A022449 := proc(n)     A002808(A008578(n)) ; end proc: seq(A022449(n), n=1..40) ; # R. J. Mathar, Jan 28 2014 MATHEMATICA p[1] = 1; p[n_] := Prime[n - 1]; Composite[n_] := FixedPoint[n + PrimePi[#] + 1 & , n + PrimePi[n] + 1]; a[n_] := Composite[p[n]]; Array[a, 100] (* Jean-François Alcover, Jan 26 2018, after Robert G. Wilson v *) PROG (Haskell) a022449 = a002808 . a008578 a022449_list = map a002808 a008578_list -- Reinhard Zumkeller, Jan 12 2013 CROSSREFS A065858 with a leading 4. Sequence in context: A069148 A328144 A103800 * A088686 A161344 A127792 Adjacent sequences:  A022446 A022447 A022448 * A022450 A022451 A022452 KEYWORD nonn AUTHOR EXTENSIONS Definition corrected by Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Mar 30 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)