%I #10 Apr 12 2014 19:27:19
%S 1,2,3,1,4,2,5,3,1,4,6,2,7,5,3,1,8,4,9,6,2,7,10,5,3,1,8,4,11,9,12,6,2,
%T 7,10,5,13,3,1,8,14,4,15,11,9,12,16,6,2,7,10,5,17,13,3,1,8,14,18,4,19,
%U 15,11,9,12,16,20,6,2,7,21,10,22,5,17,13,3,1
%N Fractal sequence of the dispersion of the composite numbers.
%D C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol. 45 p 157 1997.
%H C. Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a>
%t compositePi[n_] := Length[Select[Table[FixedPoint[i + PrimePi[#] + 1 &, i + PrimePi[i] + 1], {i,n}], # <= n &]]; compositefractal[n_] := PrimePi[NestWhile[compositePi, n, ! PrimeQ[#] && # != 1 &]] + 1; Array[compositefractal, 30] (* _Birkas Gyorgy_, Apr 05 2011 *)
%K nonn
%O 0,2
%A _Clark Kimberling_