The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022438 a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a. 3
 2, 3, 5, 7, 12, 15, 18, 20, 23, 25, 29, 31, 35, 38, 41, 45, 48, 51, 54, 57, 60, 63, 66, 69, 71, 75, 77, 81, 83, 86, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 171, 173 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS From Clark Kimberling, Feb 25 2018: (Start) Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-3), where a(0) = 2, a(1) = 3, a(2) = 5. From the Bode-Harborth-Kimberling link: a(n) = b(n-1) + b(n-3) for n > 3; b(0) = least positive integer not in {a(0),a(1),a(2)}; b(n) = least positive integer not in {a(0),...,a(n),b(0),...,b(n-1)} for n > 1. Note that (b(n)) is strictly increasing and is the complement of (a(n)). See A022424 for a guide to related sequences. (End) LINKS Ivan Neretin, Table of n, a(n) for n = 0..10000 J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264. MATHEMATICA Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2, #2 + 2}]]] &, {2, 3, 5}, Range] (* Ivan Neretin, Mar 30 2017 *) mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a = 2; a = 3; a = 5; b = 1; b = 4; a[n_] := a[n] = b[n - 1] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}]    (* A022438 *) Table[b[n], {n, 0, 100}]    (* A299540 *) (* Clark Kimberling, Feb 25 2018 *) CROSSREFS Cf. A022424 and references therein. Cf. A299540. Sequence in context: A100036 A179781 A309370 * A193760 A113623 A308868 Adjacent sequences:  A022435 A022436 A022437 * A022439 A022440 A022441 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 10:24 EDT 2020. Contains 337264 sequences. (Running on oeis4.)