This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022407 a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=8. 2
 3, 8, 12, 21, 34, 56, 91, 148, 240, 389, 630, 1020, 1651, 2672, 4324, 6997, 11322, 18320, 29643, 47964, 77608, 125573, 203182, 328756, 531939, 860696, 1392636, 2253333, 3645970, 5899304, 9545275, 15444580, 24989856, 40434437, 65424294 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,0,-1) FORMULA a(n) = Fibonacci(n) + Fibonacci(n+7) - 1, n >= -2. - Zerinvary Lajos, Feb 01 2008 From Lambert Herrgesell (zero815(AT)googlemail.com), Feb 24 2008: (Start) O.g.f.: (-4*x^2 + 2*x + 3)/(x^3 - 2*x + 1). a(n) = -1 - B*(2/(-1-sqrt(5)))^n - C*(2/(-1+sqrt(5)))^n, with B=(-8 - 6*sqrt(5))/(5 + 3*sqrt(5)), C=(-8 + 6*sqrt(5))/(5 - 3*sqrt(5)). (End) MAPLE with(combinat): seq(fibonacci(n)+fibonacci(n+7)-1, n=-2..32); - Zerinvary Lajos, Feb 01 2008 MATHEMATICA Transpose[NestList[{#[[2]], Total[#]+1}&, {3, 8}, 35]][[1]]  (* Harvey P. Dale, Feb 07 2011 *) Table[Fibonacci[n-2] + Fibonacci[n+5] - 1, {n, 0, 50}] (* G. C. Greubel, Mar 01 2018 *) PROG (PARI) for(n=0, 30, print1(fibonacci(n-2) + fibonacci(n+5) - 1, ", ")) \\ G. C. Greubel, Mar 01 2018 (MAGMA) [Fibonacci(n-2) + Fibonacci(n+5) - 1: n in [0..30]]; // G. C. Greubel, Mar 01 2018 CROSSREFS Sequence in context: A294482 A103888 A014255 * A169923 A158022 A209934 Adjacent sequences:  A022404 A022405 A022406 * A022408 A022409 A022410 KEYWORD nonn AUTHOR EXTENSIONS More terms from James A. Sellers, Aug 08 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 00:55 EDT 2018. Contains 300772 sequences. (Running on oeis4.)