|
|
A022397
|
|
Fibonacci sequence beginning 1, 27.
|
|
1
|
|
|
1, 27, 28, 55, 83, 138, 221, 359, 580, 939, 1519, 2458, 3977, 6435, 10412, 16847, 27259, 44106, 71365, 115471, 186836, 302307, 489143, 791450, 1280593, 2072043, 3352636, 5424679, 8777315, 14201994, 22979309, 37181303, 60160612, 97341915, 157502527, 254844442, 412346969, 667191411
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1, 1).
|
|
FORMULA
|
G.f.: (1+26*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 27*A000045(n) + A000045(n-1). - Paolo P. Lava, May 19 2015
|
|
MAPLE
|
with(numtheory): with(combinat): P:=proc(q) local n;
for n from 0 to q do print(27*fibonacci(n)+fibonacci(n-1));
od; end: P(30); # Paolo P. Lava, May 19 2015
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1}, {1, 27}, 30] (* Harvey P. Dale, Apr 03 2017 *)
Table[Fibonacci[n+2] + 25*Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 01 2018 *)
|
|
PROG
|
(PARI) for(n=0, 40, print1(fibonacci(n+2) + 25*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 01 2018
(MAGMA) [Fibonacci(n+2) + 25*Fibonacci(n): n in [0..40]]; // G. C. Greubel, Mar 01 2018
|
|
CROSSREFS
|
Sequence in context: A031171 A106126 A069551 * A042470 A042468 A042472
Adjacent sequences: A022394 A022395 A022396 * A022398 A022399 A022400
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms added by G. C. Greubel, Mar 01 2018
|
|
STATUS
|
approved
|
|
|
|