OFFSET
0,2
COMMENTS
a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(22;n-1-k,k), n>=1, with a(-1)=21. These are the SW-NE diagonals in P(22;n,k), the (22,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1, 1).
FORMULA
a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=22. a(-1):=21.
G.f.: (1+21*x)/(1-x-x^2).
MATHEMATICA
Table[Fibonacci[n + 2] + 20*Fibonacci[n], {n, 0, 50}] (* or *) LinearRecurrence[{1, 1}, {1, 22}, 50] (* G. C. Greubel, Mar 02 2018 *)
PROG
(PARI) for(n=0, 50, print1(fibonacci(n+2) + 20*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 02 2018
(Magma) [Fibonacci(n+2) + 20*Fibonacci(n): n in [0..50]]; // G. C. Greubel, Mar 02 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(30) onward added by G. C. Greubel, Mar 02 2018
STATUS
approved