login
A022387
Fibonacci sequence beginning 4, 30.
1
4, 30, 34, 64, 98, 162, 260, 422, 682, 1104, 1786, 2890, 4676, 7566, 12242, 19808, 32050, 51858, 83908, 135766, 219674, 355440, 575114, 930554, 1505668, 2436222, 3941890, 6378112, 10320002, 16698114, 27018116, 43716230, 70734346, 114450576, 185184922, 299635498, 484820420
OFFSET
0,1
FORMULA
G.f.: (4+26*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 4*Fibonacci(n+2) + 22*fibonacci(n) = 4*Fibonacci(n-1) + 30*Fibonacci(n). - G. C. Greubel, Mar 02 2018
MAPLE
with(combinat, fibonacci): seq(4*fibonacci(n+2)+22*fibonacci(n), n=0..35); # Muniru A Asiru, Mar 03 2018
MATHEMATICA
LinearRecurrence[{1, 1}, {4, 30}, 30] (* Harvey P. Dale, Oct 16 2012 *)
CoefficientList[Series[(4 + 26 * x)/(1 - x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 17 2012 *)
Table[4 * Fibonacci[n + 2] + 22 * Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 02 2018 *)
PROG
(Magma) I:=[4, 30]; [n le 2 select I[n] else Self(n-1) + Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012
(PARI) for(n=0, 40, print1(4*fibonacci(n+2) + 22*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 01 2018
(Magma) [4*Fibonacci(n+2) + 22*Fibonacci(n): n in [0..40]]; // G. C. Greubel, Mar 01 2018
(GAP) List([0..40], n->4*Fibonacci(n+2)+22*Fibonacci(n)); # Muniru A Asiru, Mar 03 2018
CROSSREFS
Equals 2 * A022117.
Sequence in context: A364853 A298648 A164820 * A108559 A167395 A327434
KEYWORD
nonn,easy
STATUS
approved