login
Fibonacci sequence beginning 4, 26.
1

%I #20 Sep 08 2022 08:44:46

%S 4,26,30,56,86,142,228,370,598,968,1566,2534,4100,6634,10734,17368,

%T 28102,45470,73572,119042,192614,311656,504270,815926,1320196,2136122,

%U 3456318,5592440,9048758,14641198,23689956,38331154,62021110,100352264,162373374,262725638,425099012

%N Fibonacci sequence beginning 4, 26.

%H G. C. Greubel, <a href="/A022386/b022386.txt">Table of n, a(n) for n = 0..1000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1).

%F G.f.: (4+22x)/(1-x-x^2). - _Philippe Deléham_, Nov 19 2008

%F a(n) = 4*Fibonacci(n+2) + 18*Fibonacci(n) = 4*Fibonacci(n-1) + 26*Fibonacci(n). - _G. C. Greubel_, Mar 02 2018

%t Table[4*Fibonacci[n+2] + 18*Fibonacci[n], {n,0,50}] (* or *) LinearRecurrence[{1,1}, {4,26}, 50] (* _G. C. Greubel_, Mar 02 2018 *)

%o (PARI) for(n=0, 50, print1(4*fibonacci(n+2) + 18*fibonacci(n), ", ")) \\ _G. C. Greubel_, Mar 02 2018

%o (Magma) [4*Fibonacci(n+2) + 18*Fibonacci(n): n in [0..50]]; // _G. C. Greubel_, Mar 02 2018

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Jun 14 1998

%E More terms from _Wesley Ivan Hurt_, Jun 10 2014