login
A022384
Fibonacci sequence beginning 4, 18.
1
4, 18, 22, 40, 62, 102, 164, 266, 430, 696, 1126, 1822, 2948, 4770, 7718, 12488, 20206, 32694, 52900, 85594, 138494, 224088, 362582, 586670, 949252, 1535922, 2485174, 4021096, 6506270, 10527366, 17033636, 27561002, 44594638, 72155640, 116750278, 188905918, 305656196
OFFSET
0,1
FORMULA
G.f.: (4+14*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(0)=4, a(1)=18, a(n) = a(n-1) + a(n-2). - Harvey P. Dale, Sep 04 2011
a(n) = 4*Fibonacci(n+2) + 10*Fibonacci(n) = 4*Fibonacci(n+2) + 18*Fibonacci(n). - G. C. Greubel, Mar 02 2018
MATHEMATICA
LinearRecurrence[{1, 1}, {4, 18}, 40] (* or *) CoefficientList[ Series[ -((2 (7x+2))/(x^2+x-1)), {x, 0, 40}], x](* Harvey P. Dale, Sep 04 2011 *)
Table[4*Fibonacci[n+2] + 10*Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 02 2018 *)
PROG
(PARI) for(n=0, 50, print1(4*fibonacci(n+2) + 10*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 02 2018
(Magma) [4*Fibonacci(n+2) + 10*Fibonacci(n): n in [0..50]]; // G. C. Greubel, Mar 02 2018
CROSSREFS
Sequence in context: A103061 A230605 A201880 * A093022 A255409 A363052
KEYWORD
nonn
EXTENSIONS
Terms a(30) onward added by G. C. Greubel, Mar 02 2018
STATUS
approved