OFFSET
0,1
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
G.f.: (4+10*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 4*Fibonacci(n+2) + 6*Fibonacci(n) = 4*Fibonacci(n) + 14*Fibonacci(n-1). - G. C. Greubel, Mar 06 2018
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 6*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jul 17 2022
a(n) = 2 * A022113(n). - Alois P. Heinz, Jul 17 2022
MATHEMATICA
a[1] := 4; a[2] := 14; a[n_] := a[n - 1] + a[n - 2]; Table[a[n], {n, 1, 30}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{1, 1}, {4, 14}, 40] (* Harvey P. Dale, Feb 15 2015 *)
PROG
(PARI) Vec((4+10*x)/(1-x-x^2)+O(x^99)) \\ Charles R Greathouse IV, May 15 2013
(Magma) [4*Fibonacci(n+2) + 6*Fibonacci(n): n in [0..40]]; // G. C. Greubel, Mar 06 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Stefan Steinerberger, Apr 08 2006
STATUS
approved