login
A022345
Fibonacci sequence beginning 0, 11.
2
0, 11, 11, 22, 33, 55, 88, 143, 231, 374, 605, 979, 1584, 2563, 4147, 6710, 10857, 17567, 28424, 45991, 74415, 120406, 194821, 315227, 510048, 825275, 1335323, 2160598, 3495921, 5656519, 9152440, 14808959, 23961399, 38770358, 62731757, 101502115, 164233872
OFFSET
0,2
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
FORMULA
a(n) = 11*F(n) = F(n+4) + F(n+2) + F(n) + F(n-2) + F(n-4) with n > 3 and F = A000045.
G.f.: 11*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = Fibonacci(n+5) - Fibonacci(n-5), where Fibonacci(-5..-1) = 5, -3, 2, -1, 1. - Bruno Berselli, May 22 2015
MATHEMATICA
Table[11 Fibonacci(n), {n, 0, 40}] (* Bruno Berselli, May 22 2015 *)
PROG
(Magma) [11*Fibonacci(n): n in [0..40]]; // Bruno Berselli, May 22 2015
(PARI) x='x+O('x^50); concat([0], Vec(11*x/(1-x-x^2))) \\ G. C. Greubel, Aug 25 2017
CROSSREFS
Cf. A000045.
Cf. similar sequences listed in A258160.
Sequence in context: A040111 A003887 A138844 * A246554 A218163 A152082
KEYWORD
nonn,easy
EXTENSIONS
More terms from Bruno Berselli, May 22 2015
STATUS
approved