OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
FORMULA
a(n) = -1 + (1/2)*((1 + sqrt(5))/2)^n + (19/10)sqrt(5)*((1 + sqrt(5))/2)^n - (19/10)*sqrt(5)*((1 - sqrt(5))/2)^n + (1/2)*((1 - sqrt(5))/2)^n, obtained using PURRS. - Alexander R. Povolotsky, Apr 22 2008
From R. J. Mathar, Apr 07 2011: (Start)
G.f.: -x*(-9+8*x) / ( (x-1)*(x^2+x-1) ).
a(n) = A022100(n) - 1. (End)
a(n) = F(n+2) + 8*F(n) - 1, where A000045. - G. C. Greubel, Aug 25 2017
EXAMPLE
G.f. = 9*x + 10*x^2 + 20*x^3 + 31*x^4 + 52*x^5 + 84*x^6 + 137*x^7 + 222*x^8 + ...
MATHEMATICA
LinearRecurrence[{2, 0, -1}, {0, 9, 10}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
a[ n_] := 9 Fibonacci[n] + Fibonacci[n + 1] - 1; (* Michael Somos, Nov 21 2016 *)
PROG
(PARI) concat(0, Vec(-x*(-9+8*x) / ( (x-1)*(x^2+x-1) ) + O(x^30))) \\ Michel Marcus, Nov 20 2016
{a(n) = 9*fibonacci(n) + fibonacci(n+1) - 1}; /* Michael Somos, Nov 21 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved