login
A022311
a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=1.
1
0, 6, 7, 14, 22, 37, 60, 98, 159, 258, 418, 677, 1096, 1774, 2871, 4646, 7518, 12165, 19684, 31850, 51535, 83386, 134922, 218309, 353232, 571542, 924775, 1496318, 2421094, 3917413, 6338508, 10255922, 16594431, 26850354, 43444786, 70295141, 113739928
OFFSET
0,2
FORMULA
Equals A022097(n) - 1.
G.f.: (6*x-5*x^2)/(1-2*x+x^3). - Franklin T. Adams-Watters, Oct 17 2006
a(n) = F(n+2) + 5*F(n) - 1, where F = A000045. - G. C. Greubel, Aug 25 2017
MATHEMATICA
LinearRecurrence[{2, 0, -1}, {0, 6, 7}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec((6*x-5*x^2)/(1-2*x+x^3))) \\ G. C. Greubel, Aug 25 2017
CROSSREFS
Cf. A000045.
Sequence in context: A315841 A058556 A332045 * A219382 A047915 A084382
KEYWORD
nonn,easy
STATUS
approved