login
A022274
a(n) = n*(17*n - 1)/2.
3
0, 8, 33, 75, 134, 210, 303, 413, 540, 684, 845, 1023, 1218, 1430, 1659, 1905, 2168, 2448, 2745, 3059, 3390, 3738, 4103, 4485, 4884, 5300, 5733, 6183, 6650, 7134, 7635, 8153, 8688, 9240, 9809, 10395, 10998, 11618, 12255, 12909, 13580, 14268, 14973
OFFSET
0,2
FORMULA
a(n) = 17*n + a(n-1) - 9 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
From Vincenzo Librandi, Mar 31 2015: (Start)
G.f.: x*(8 + 9*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
a(n) = A022275(-n). - Bruno Berselli, Mar 31 2015
a(n) = A000217(9*n-1) - A000217(8*n-1). - Bruno Berselli, Oct 17 2016
E.g.f.: (x/2)*(17*x + 16)*exp(x). - G. C. Greubel, Aug 23 2017
MATHEMATICA
Table[n (17 n - 1)/2, {n, 0, 40}] (* Bruno Berselli, Mar 12 2015 *)
CoefficientList[Series[x (8 + 9 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 31 2015 *)
LinearRecurrence[{3, -3, 1}, {0, 8, 3 3}, 50] (* Harvey P. Dale, Feb 18 2016 *)
PROG
(Magma) [n*(17*n - 1)/2: n in [0..45]]; // Vincenzo Librandi, Mar 31 2015
(PARI) a(n)=n*(17*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. similar sequences listed in A022288.
Sequence in context: A319524 A107291 A044466 * A118312 A212679 A204468
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Mar 31 2015
STATUS
approved