login
Gaussian binomial coefficients [ n,12 ] for q = 9.
2

%I #14 Sep 08 2022 08:44:46

%S 1,317733228541,90858964067210376612667,

%T 25696504083440779881815469635549047,

%U 7258558056330718241144285557911444544132154908,2050065905416034207242060732309202881550943087590159038828,579000252913277034724666671128579290474420179812795955722564434314244

%N Gaussian binomial coefficients [ n,12 ] for q = 9.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

%H Vincenzo Librandi, <a href="/A022263/b022263.txt">Table of n, a(n) for n = 12..100</a>

%F a(n) = Product_{i=1..12} (9^(n-i+1)-1)/(9^i-1), by definition. - _Vincenzo Librandi_, Aug 04 2016

%t Table[QBinomial[n, 12, 9], {n, 12, 30}] (* _Vincenzo Librandi_, Aug 04 2016 *)

%o (Sage) [gaussian_binomial(n,12,9) for n in range(12,19)] # _Zerinvary Lajos_, May 28 2009

%o (Magma) r:=12; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 04 2016

%K nonn

%O 12,2

%A _N. J. A. Sloane_.

%E Offset changed by _Vincenzo Librandi_, Aug 04 2016