%I #15 Sep 08 2022 08:44:46
%S 1,3922632451,13848340811466703906,48352505889707776105242586606,
%T 168620463706718874134703442098874261321,
%U 587953159580355890974683988909617412559591458771,2050069762911386221695293524269464063566943065726695501256
%N Gaussian binomial coefficients [ n,10 ] for q = 9.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022261/b022261.txt">Table of n, a(n) for n = 10..110</a>
%F a(n) = Product_{i=1..10} (9^(n-i+1)-1)/(9^i-1), by definition. - _Vincenzo Librandi_, Aug 05 2016
%t Table[QBinomial[n, 10, 9], {n, 10, 20}] (* _Vincenzo Librandi_, Aug 05 2016 *)
%o (Sage) [gaussian_binomial(n,10,9) for n in range(10,17)] # _Zerinvary Lajos_, May 27 2009
%o (Magma) r:=10; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 05 2016
%K nonn
%O 10,2
%A _N. J. A. Sloane_.
%E Offset changed by _Vincenzo Librandi_, Aug 05 2016