login
Gaussian binomial coefficients [ n,7 ] for q = 9.
1

%I #15 Sep 08 2022 08:44:46

%S 1,5380840,26058095733124,124806266065883690200,

%T 597035499217287155085549610,2855650645340126913932218722028600,

%U 13658514212390616911370927114097728660820

%N Gaussian binomial coefficients [ n,7 ] for q = 9.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

%H Vincenzo Librandi, <a href="/A022258/b022258.txt">Table of n, a(n) for n = 7..150</a>

%F a(n) = Product_{i=1..7} (9^(n-i+1)-1)/(9^i-1), by definition. - _Vincenzo Librandi_, Aug 03 2016

%t Table[QBinomial[n, 7, 9], {n, 7, 20}] (* _Vincenzo Librandi_, Aug 04 2016 *)

%o (Sage) [gaussian_binomial(n,7,9) for n in range(7,14)] # _Zerinvary Lajos_, May 27 2009

%o (Magma) r:=7; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 04 2016

%K nonn

%O 7,2

%A _N. J. A. Sloane_

%E Offset changed by _Vincenzo Librandi_, Aug 04 2016