%I #15 Sep 08 2022 08:44:46
%S 1,5380840,26058095733124,124806266065883690200,
%T 597035499217287155085549610,2855650645340126913932218722028600,
%U 13658514212390616911370927114097728660820
%N Gaussian binomial coefficients [ n,7 ] for q = 9.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022258/b022258.txt">Table of n, a(n) for n = 7..150</a>
%F a(n) = Product_{i=1..7} (9^(n-i+1)-1)/(9^i-1), by definition. - _Vincenzo Librandi_, Aug 03 2016
%t Table[QBinomial[n, 7, 9], {n, 7, 20}] (* _Vincenzo Librandi_, Aug 04 2016 *)
%o (Sage) [gaussian_binomial(n,7,9) for n in range(7,14)] # _Zerinvary Lajos_, May 27 2009
%o (Magma) r:=7; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 04 2016
%K nonn
%O 7,2
%A _N. J. A. Sloane_
%E Offset changed by _Vincenzo Librandi_, Aug 04 2016