%I #14 Sep 08 2022 08:44:46
%S 1,4681,19477641,79936505481,327499862955657,1341480367403783817,
%T 5494724540479236953737,22506402447071849965115017,
%U 92186229916592298695053497993,377594800550975709003441429239433,1546628304496854696033468524851058313
%N Gaussian binomial coefficients [ n,4 ] for q = 8.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022244/b022244.txt">Table of n, a(n) for n = 4..200</a>
%F a(n) = Product_{i=1..4} (8^(n-i+1)-1)/(8^i-1), by definition. - _Vincenzo Librandi_, Aug 05 2016
%t Table[QBinomial[n, 4, 8], {n, 4, 20}] (* _Vincenzo Librandi_, Aug 05 2016 *)
%o (Sage) [gaussian_binomial(n,4,8) for n in range(4,15)] # _Zerinvary Lajos_, May 27 2009
%o (Magma) r:=4; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 05 2016
%K nonn
%O 4,2
%A _N. J. A. Sloane_.
%E Offset changed by _Vincenzo Librandi_, Aug 05 2016