login
Gaussian binomial coefficients [ n,11 ] for q = 7.
1

%I #14 Sep 08 2022 08:44:46

%S 1,2306881200,4656488262337620150,9234320988196680367732171600,

%T 18266877872505055585959373506477770853,

%U 36121735336208679823466411064327588635221204800,71425080387019299237581315602206452684576535149974900600

%N Gaussian binomial coefficients [ n,11 ] for q = 7.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

%H Vincenzo Librandi, <a href="/A022240/b022240.txt">Table of n, a(n) for n = 11..111</a>

%F a(n) = Product_{i=1..11} (7^(n-i+1)-1)/(7^i-1), by definition. - _Vincenzo Librandi_, Aug 05 2016

%t Table[QBinomial[n, 11, 7], {n, 11, 20}] (* _Vincenzo Librandi_, Aug 05 2016 *)

%o (Sage) [gaussian_binomial(n,11,7) for n in range(11,18)] # _Zerinvary Lajos_, May 28 2009

%o (Magma) r:=11; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 05 2016

%K nonn

%O 11,2

%A _N. J. A. Sloane_.

%E Offset changed by _Vincenzo Librandi_, Aug 05 2016