%I #13 Sep 08 2022 08:44:46
%S 1,329554457,95030372653688550,26922218610904350161500150,
%T 7608029097572151019476340332672053,
%U 2149207789489010647406518443408592558383021
%N Gaussian binomial coefficients [ n,10 ] for q = 7.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022239/b022239.txt">Table of n, a(n) for n = 10..130</a>
%F G.f.: x^10/((1-x)*(1-7*x)*(1-49*x)*(1-343*x)*(1-2401*x)*(1-16807*x)*(1-117649*x)*(1-823543*x)*(1-5764801*x)*(1-40353607*x)*(1-282475249*x)). - _Vincenzo Librandi_, Aug 12 2016
%F a(n) = Product_{i=1..10} (7^(n-i+1)-1)/(7^i-1), by definition. - _Vincenzo Librandi_, Aug 12 2016
%t Table[QBinomial[n, 10, 7], {n, 10, 20}] (* _Vincenzo Librandi_, Aug 12 2016 *)
%o (Sage) [gaussian_binomial(n,10,7) for n in range(10,16)] # _Zerinvary Lajos_, May 27 2009
%o (Magma) r:=10; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 12 2016
%K nonn,easy
%O 10,2
%A _N. J. A. Sloane_
%E Offset changed by _Vincenzo Librandi_, Aug 12 2016