login
Gaussian binomial coefficients [ n,7 ] for q = 7.
1

%I #14 Sep 08 2022 08:44:46

%S 1,960800,807744680100,667157540444234400,549661852436388016181802,

%T 452697105941691435357049202400,372818701621367349292382501162685300,

%U 307032604808067352305645854537522502703200,252854596323205247053675081227392663237129990403

%N Gaussian binomial coefficients [ n,7 ] for q = 7.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

%H Vincenzo Librandi, <a href="/A022236/b022236.txt">Table of n, a(n) for n = 7..170</a>

%F a(n) = Product_{i=1..7} (7^(n-i+1)-1)/(7^i-1), by definition. - _Vincenzo Librandi_, Aug 06 2016

%F G.f.: x^7/((1 - x)*(1 - 7*x)*(1 - 49*x)*(1 - 343*x)*(1 - 2401*x)*(1 - 16807*x)*(1 - 117649*x)*(1 - 823543*x)). - _Ilya Gutkovskiy_, Aug 06 2016

%t Table[QBinomial[n, 7, 7], {n, 7, 20}] (* _Vincenzo Librandi_, Aug 06 2016 *)

%o (Sage) [gaussian_binomial(n,7,7) for n in range(7,16)] # [_Zerinvary Lajos_, May 27 2009]

%o (Magma) r:=7; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 06 2016

%K nonn

%O 7,2

%A _N. J. A. Sloane_.

%E Offset changed by _Vincenzo Librandi_, Aug 06 2016