%I #17 Sep 08 2022 08:44:46
%S 1,5592405,25019996065701,106607206793565997285,
%T 448896535558672700374937061,1884649011792085827682980366254565,
%U 7906721240160746987619507371870782509541,33165216768196105736186294932151329554455695845
%N Gaussian binomial coefficients [ n,11 ] for q = 4.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022210/b022210.txt">Table of n, a(n) for n = 11..160</a>
%F G.f.: x^11/((1-x)*(1-4*x)*(1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)*(1-4096*x)*(1-16384*x)*(1-65536*x)*(1-262144*x)*(1-1048576*x)*(1-4194304*x)). - _Vincenzo Librandi_, Aug 11 2016
%F a(n) = Product_{i=1..11} (4^(n-i+1)-1)/(4^i-1), by definition. - _Vincenzo Librandi_, Aug 11 2016
%t Table[QBinomial[n, 11, 4], {n, 11, 20}] (* _Vincenzo Librandi_, Aug 11 2016 *)
%o (Sage) [gaussian_binomial(n,11,4) for n in range(11,19)] # _Zerinvary Lajos_, May 28 2009
%o (Magma) r:=11; q:=4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 11 2016
%o (PARI) r=11; q=4; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, Jun 04 2018
%K nonn,easy
%O 11,2
%A _N. J. A. Sloane_
%E Offset changed by _Vincenzo Librandi_, Aug 11 2016