%I #17 Sep 08 2022 08:44:46
%S 1,364,99463,25095280,6174066262,1506472167928,366573514642546,
%T 89117945389585840,21658948312410865183,5263390747480701708292,
%U 1279025522911365763892449,310804949350361548416923680,75525744222315755534269847164
%N Gaussian binomial coefficients [ n,5 ] for q = 3.
%H Vincenzo Librandi, <a href="/A022196/b022196.txt">Table of n, a(n) for n = 5..200</a>
%F G.f.: x^5/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)). - _Vincenzo Librandi_, Aug 07 2016
%F a(n) = Product_{i=1..5} (3^(n-i+1)-1)/(3^i-1), by definition. - _Vincenzo Librandi_, Aug 06 2016
%t Table[QBinomial[n, 5, 3], {n, 5, 20}] (* _Vincenzo Librandi_, Aug 07 2016 *)
%o (Sage) [gaussian_binomial(n,5,3) for n in range(5,17)] # _Zerinvary Lajos_, May 25 2009
%o (Magma) r:=5; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 07 2016
%o (PARI) r=5; q=3; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, May 30 2018
%K nonn,easy
%O 5,2
%A _N. J. A. Sloane_
%E Offset changed by _Vincenzo Librandi_, Aug 07 2016