login
Gaussian binomial coefficients [ n,6 ] for q = 2.
3

%I #19 Sep 08 2022 08:44:46

%S 1,127,10795,788035,53743987,3548836819,230674393235,14877590196755,

%T 955841412523283,61291693863308051,3926442969043883795,

%U 251413193158549532435,16094312257426532376339,1030159771762835353435923

%N Gaussian binomial coefficients [ n,6 ] for q = 2.

%H Vincenzo Librandi, <a href="/A022189/b022189.txt">Table of n, a(n) for n = 6..200</a>

%F a(n) = Product_{i=1..6} (2^(n-i+1)-1)/(2^i-1), by definition. - _Vincenzo Librandi_, Aug 03 2016

%t Table[QBinomial[n, 6, 2], {n, 6, 24}] (* _Vincenzo Librandi_, Aug 03 2016 *)

%o (Sage) [gaussian_binomial(n,6,2) for n in range(6,20)] # _Zerinvary Lajos_, May 24 2009

%o (Magma) r:=6; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 03 2016

%o (PARI) r=6; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, May 30 2018

%K nonn

%O 6,2

%A _N. J. A. Sloane_

%E Offset changed by _Vincenzo Librandi_, Aug 03 2016