%I #34 Mar 13 2021 10:04:16
%S 1,1,1,1,9,1,1,73,73,1,1,585,4745,585,1,1,4681,304265,304265,4681,1,1,
%T 37449,19477641,156087945,19477641,37449,1,1,299593,1246606473,
%U 79936505481,79936505481,1246606473,299593,1
%N Triangle of Gaussian binomial coefficients [ n,k ] for q = 8.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H G. C. Greubel, <a href="/A022172/b022172.txt">Rows n=0..50 of triangle, flattened</a>
%H R. Mestrovic, <a href="http://arxiv.org/abs/1409.3820">Lucas' theorem: its generalizations, extensions and applications (1878--2014)</a>, arXiv preprint arXiv:1409.3820 [math.NT], 2014.
%H Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
%F T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - _Peter A. Lawrence_, Jul 13 2017
%e 1 ;
%e 1 1;
%e 1 9 1;
%e 1 73 73 1;
%e 1 585 4745 585 1;
%e 1 4681 304265 304265 4681 1;
%e 1 37449 19477641 156087945 19477641 37449 1;
%e 1 299593 1246606473 79936505481 79936505481 1246606473 299593 1;
%e 1 2396745 79783113865 40928737412745 327499862955657 40928737412745 79783113865 2396745 1 ;
%p A027876 := proc(n)
%p mul(8^i-1,i=1..n) ;
%p end proc:
%p A022172 := proc(n,m)
%p A027876(n)/A027876(m)/A027876(n-m) ;
%p end proc: # _R. J. Mathar_, Jul 19 2017
%t a027878[n_]:=Times@@ Table[8^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n - m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* _Indranil Ghosh_, Jul 20 2017 *)
%t Table[QBinomial[n,k,8], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 8; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, May 27 2018 *)
%o (Python)
%o from operator import mul
%o def a027878(n): return 1 if n==0 else reduce(mul, [8**i - 1 for i in range(1, n + 1)])
%o def T(n, m): return a027878(n)//(a027878(m)*a027878(n - m))
%o for n in range(11): print([T(n, m) for m in range(n + 1)]) # _Indranil Ghosh_, Jul 20 2017
%o (PARI) {q=8; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1,k-1) + q^k*T(n-1,k))))};
%o for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 27 2018
%Y Cf. A023001 (k=1), A022242 (k=2).
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_