OFFSET
0,1
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..4770
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1, 1).
FORMULA
G.f.: (3 + 14*x) / (1 - x - x^2). - Philippe Deléham, Nov 19 2008
From Colin Barker, Feb 21 2017: (Start)
a(n) = 2^(-1-n)*((1-sqrt(5))^n*(-31+3*sqrt(5)) + (1+sqrt(5))^n*(31+3*sqrt(5))) / sqrt(5).
a(n) = a(n-1) + a(n-2) for n>1.
(End)
MATHEMATICA
LinearRecurrence[{1, 1}, {3, 17}, 31] (* or *) CoefficientList[Series[(3+14x)/(1-x-x^2) , {x, 0, 30}], x] (* or *) a[0] = 3; a[1] = 17; a[n_]:=a[n-2]+ a[n-1]; Table[a[n], {n, 0, 30}] (* Indranil Ghosh, Feb 20 2017 *)
PROG
(PARI) Vec((3 + 14*x) / (1 - x - x^2) + O(x^30)) \\ Colin Barker, Feb 21 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved