login
A022035
Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(6,37).
1
6, 37, 228, 1404, 8645, 53230, 327753, 2018073, 12425877, 76509828, 471093813, 2900665005, 17860258910, 109970936934, 677123832923, 4169253239949, 25671334745061, 158066058755653, 973259831585207, 5992650839998179, 36898537188819414, 227195290202341077
OFFSET
0,1
COMMENTS
This coincides with the Pisot T(6,37) sequence as defined in A008776 at least up to n<=16000. - R. J. Mathar, Feb 13 2016
FORMULA
Empirical g.f.: -(x^6+x^5+x^4+x^3-x-6) / (x^7+x^6+x^5+x^4-x^2-6*x+1). - Colin Barker, Sep 18 2015
PROG
(PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
T(6, 37, 30) \\ Colin Barker, Feb 16 2016
CROSSREFS
Sequence in context: A033124 A288786 A180032 * A255119 A005668 A018904
KEYWORD
nonn
AUTHOR
STATUS
approved