%I #50 Nov 04 2023 11:29:07
%S 17,1277,113147,2580647,20737877,58208387,73373537,76170527,100658627,
%T 134764997,137943347,165531257,171958667,224008217,252277007,
%U 294536147,309740987,311725847,364154027,408936947,515447747,521481197,528272177,619010297,626927447,682809977
%N Initial members of prime octuplets (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26).
%C All terms are congruent to 17 (modulo 30). - _Matt C. Anderson_, May 26 2015
%H Dana Jacobsen, <a href="/A022012/b022012.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Matt C. Anderson)
%H T. Forbes and Norman Luhn, <a href="http://www.pzktupel.de/ktuplets.htm">Prime k-tuplets</a>
%H Norman Luhn and Hugo Pfoertner, <a href="https://pzktupel.de/SMArchiv/08tup2.7z">10 million terms of A022012</a>, 7z compressed (46.4 MB) (2021).
%t Select[Prime[Range[2 10^9]], Union[PrimeQ[# + {2, 6, 12, 14, 20, 24, 26}]] == {True} &] (* _Vincenzo Librandi_, Oct 01 2015 *)
%o (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e10, 2,6,12,14,20,24,26); # _Dana Jacobsen_, Sep 30 2015
%o (Magma) [p: p in PrimesUpTo(4*10^8) | forall{p+r: r in [2,6,12,14,20,24,26] | IsPrime(p+r)}]; // _Vincenzo Librandi_, Oct 01 2015
%o (PARI) forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+6) && isprime(p+12) && isprime(p+14) && isprime(p+20) && isprime(p+24) && isprime(p+26), print1(p", "))) \\ _Altug Alkan_, Oct 01 2015
%Y A065706 is the union of A022011, A022012 and A022013.
%Y A346997(n) = a(10^n).
%Y Cf. A347850, A347851.
%K nonn
%O 1,1
%A _Warut Roonguthai_