%I #13 Jul 30 2015 17:12:24
%S 1,24,389,5364,68025,821808,9633613,110741388,1256415809,14127007752,
%T 157849954197,1755978039972,19472809159753,215457395996256,
%U 2380083675784541,26261340423891516,289518110311522257
%N Expansion of 1/((1-x)(1-4x)(1-8x)(1-11x)).
%H Vincenzo Librandi, <a href="/A021924/b021924.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (24, -187, 516, -352).
%F a(0)=1, a(1)=24, a(2)=389, a(3)=5364, a(n)=24*a(n-1)-187*a(n-2)+ 516*a(n-3)- 352*a(n-4). - _Harvey P. Dale_, Dec 27 2012
%F a(n) = (14*11^(n+3) - 35*8^(n+3) + 35*4^(n+3) - 14)/2940. [_Yahia Kahloune_, Jul 05 2013]
%t CoefficientList[Series[1/((1-x)(1-4x)(1-8x)(1-11x)),{x,0,30}],x] (* or *) LinearRecurrence[{24,-187,516,-352},{1,24,389,5364},30] (* _Harvey P. Dale_, Dec 27 2012 *)
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.