Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Sep 08 2022 08:44:45
%S 1,19,239,2519,24135,218343,1903783,16194343,135426599,1118993447,
%T 9166829607,74629521447,604827848743,4885462331431,39365093814311,
%U 316610553147431,2543028967600167,20405121901817895
%N Expansion of 1/((1-x)(1-4x)(1-6x)(1-8x)).
%H Vincenzo Librandi, <a href="/A021814/b021814.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (19,-122,296,-192).
%F G.f.: 1/((1-x)*(1-4*x)*(1-6*x)*(1-8*x)).
%F a(n) = -1/105 +2^(2n+3)/3 -2^(n+1)*3^(n+3)/5 +8^(n+2)/7. [_Bruno Berselli_, May 08 2013]
%t CoefficientList[Series[1/((1 - x) (1 - 4 x) (1 - 6 x) (1 - 8 x)), {x, 0, 20}], x] (* _Bruno Berselli_, May 08 2013 *)
%o (PARI) Vec(1/((1-x)*(1-4*x)*(1-6*x)*(1-8*x))+O(x^20)) \\ _Bruno Berselli_, May 08 2013
%o (Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-4*x)*(1-6*x)*(1-8*x)))); // _Bruno Berselli_, May 08 2013
%Y Cf. A019333 (first differences).
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.