login
A021414
Expansion of 1/((1-x)(1-3x)(1-5x)(1-6x)).
1
1, 15, 148, 1218, 9079, 63693, 429346, 2815296, 18097717, 114645531, 718257904, 4461736734, 27532164115, 169004094729, 1033087293022, 6293858904732, 38239893731473, 231823257614487, 1402859602945900
OFFSET
0,2
FORMULA
a(0)=1, a(1)=15, a(2)=148, a(3)=1218, a(n)=15*a(n-1)-77*a(n-2)+153*a(n-3)- 90*a(n-4). - Harvey P. Dale, Mar 31 2013
a(n) = (8*6^(n+3)-15*5^(n+3)+10*3^(n+3)-3)/120. - Yahia Kahloune, May 07 2013
a(0)=1, a(1)=15; for n>1, a(n) = 11*a(n-1) -30*a(n-2) +(3^n-1)/2. - Vincenzo Librandi, Jul 09 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 3 x) (1 - 5 x) (1 - 6 x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{15, -77, 153, -90}, {1, 15, 148, 1218}, 30] (* Harvey P. Dale, Mar 31 2013 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-3*x)*(1-5*x)*(1-6*x)))); /* or */ I:=[1, 15, 148, 1218]; [n le 4 select I[n] else 15*Self(n-1)-77*Self(n-2)+153*Self(n-3)-90*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 09 2013
CROSSREFS
Sequence in context: A240419 A069417 A051272 * A211847 A055431 A119998
KEYWORD
nonn,easy
AUTHOR
STATUS
approved