login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A021284 Expansion of 1/((1-x)(1-2x)(1-9x)(1-10x)). 1
1, 22, 335, 4400, 53481, 620202, 6970675, 76624900, 828512861, 8845504382, 93498427815, 980374738200, 10212261530641, 105799242660562, 1091082072825755, 11208627544304300, 114766536787594821 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (22,-149,308,-180)

FORMULA

a(n) = (7*10^(n+3) - 9^(n+4) + 9*2^(n+3) - 7)/504. - Yahia Kahloune, Jul 08 2013

a(0)=1, a(1)=22, a(2)=335, a(3)=4400; for n>3, a(n) = 22*a(n-1) -149*a(n-2) +308*a(n-3) -180*a(n-4). - Vincenzo Librandi, Jul 08 2013

a(0)=1, a(1)=22; for n>1 a(n) = 19*a(n-1) -90*a(n-2) +2^n -1. - Vincenzo Librandi, Jul 08 2013

MATHEMATICA

CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 9 x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi Jul 08 2013 *)

PROG

(MAGMA) I:=[1, 22, 335, 4400]; [n le 4 select I[n] else 22*Self(n-1)-149*Self(n-2)+308*Self(n-3)-180*Self(n-4): n in [1..25]]; /* or */ m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-9*x)*(1-10*x)))); // Vincenzo Librandi, Jul 08 2013

CROSSREFS

Sequence in context: A216730 A048795 A068186 * A019623 A021794 A223812

Adjacent sequences:  A021281 A021282 A021283 * A021285 A021286 A021287

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 01:12 EST 2016. Contains 278694 sequences.