login
A021100
Decimal expansion of 1/96.
2
0, 1, 0, 4, 1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
OFFSET
0,4
COMMENTS
From Daniel Forgues, Oct 28 2011: (Start)
Generalization:
1/6 = Sum_{i>=0} 4^i/10^(i+1);
1/96 = Sum_{i>=0} 4^i/100^(i+1) (this sequence);
1/996 = Sum_{i>=0} 4^i/1000^(i+1);
1/9996 = Sum_{i>=0} 4^i/10000^(i+1); ... (End)
FORMULA
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: x*(1 - x + 4*x^2 - 3*x^3 + 5*x^4)/(1 - x).
a(n) = 6 for n > 4. (End)
E.g.f.: 6*(exp(x) - 1) - 5*x - 3*x^2 - x^3/3 - 5*x^4/24. - Stefano Spezia, Aug 06 2024
EXAMPLE
0.0104166666666666666666666666666...
MATHEMATICA
Join[{0}, RealDigits[1/96, 10, 96][[1]]] (* Alonso del Arte, Apr 24 2018 *)
PROG
(PARI) 1/96. \\ Altug Alkan, Apr 24 2018
CROSSREFS
Sequence in context: A371498 A008565 A205325 * A021028 A193529 A214561
KEYWORD
nonn,cons,easy
STATUS
approved