login
Decimal expansion of 1/95.
0

%I #19 Sep 25 2020 00:00:57

%S 0,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,

%T 8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,

%U 3,6,8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1,0,5,2,6,3,1,5

%N Decimal expansion of 1/95.

%C Generalization:

%C 1/5 = Sum_(5^i/10^(i+1)), i >= 0,

%C 1/95 = Sum_(5^i/100^(i+1)), i >= 0, (this sequence)

%C 1/995 = Sum_(5^i/1000^(i+1)), i >= 0,

%C 1/9995 = Sum_(5^i/1000^(i+1)), i >= 0, ... - _Daniel Forgues_, Oct 28 2011

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,-1,1).

%F From _Chai Wah Wu_, Sep 24 2020: (Start)

%F a(n) = a(n-1) - a(n-9) + a(n-10) for n > 10.

%F G.f.: x*(-2*x^9 - 2*x^8 - 4*x^7 + 2*x^6 + 3*x^5 - 4*x^4 + 3*x^3 - 5*x^2 + x - 1)/(x^10 - x^9 + x - 1). (End)

%p evalf(1/95,100); # _Wesley Ivan Hurt_, Apr 28 2017

%t Join[{0},RealDigits[1/95,10,120][[1]]] (* _Harvey P. Dale_, Mar 03 2012 *)

%K nonn,cons

%O 0,4

%A _N. J. A. Sloane_