%I #19 Sep 25 2020 00:00:57
%S 0,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,
%T 8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,
%U 3,6,8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1,0,5,2,6,3,1,5
%N Decimal expansion of 1/95.
%C Generalization:
%C 1/5 = Sum_(5^i/10^(i+1)), i >= 0,
%C 1/95 = Sum_(5^i/100^(i+1)), i >= 0, (this sequence)
%C 1/995 = Sum_(5^i/1000^(i+1)), i >= 0,
%C 1/9995 = Sum_(5^i/1000^(i+1)), i >= 0, ... - _Daniel Forgues_, Oct 28 2011
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,-1,1).
%F From _Chai Wah Wu_, Sep 24 2020: (Start)
%F a(n) = a(n-1) - a(n-9) + a(n-10) for n > 10.
%F G.f.: x*(-2*x^9 - 2*x^8 - 4*x^7 + 2*x^6 + 3*x^5 - 4*x^4 + 3*x^3 - 5*x^2 + x - 1)/(x^10 - x^9 + x - 1). (End)
%p evalf(1/95,100); # _Wesley Ivan Hurt_, Apr 28 2017
%t Join[{0},RealDigits[1/95,10,120][[1]]] (* _Harvey P. Dale_, Mar 03 2012 *)
%K nonn,cons
%O 0,4
%A _N. J. A. Sloane_