login
A021098
Decimal expansion of 1/94.
0
0, 1, 0, 6, 3, 8, 2, 9, 7, 8, 7, 2, 3, 4, 0, 4, 2, 5, 5, 3, 1, 9, 1, 4, 8, 9, 3, 6, 1, 7, 0, 2, 1, 2, 7, 6, 5, 9, 5, 7, 4, 4, 6, 8, 0, 8, 5, 1, 0, 6, 3, 8, 2, 9, 7, 8, 7, 2, 3, 4, 0, 4, 2, 5, 5, 3, 1, 9, 1, 4, 8, 9, 3, 6, 1, 7, 0, 2, 1, 2, 7, 6, 5, 9, 5, 7, 4, 4, 6, 8, 0, 8, 5, 1, 0, 6, 3, 8, 2
OFFSET
0,4
COMMENTS
Generalization:
1/4 = sum (6^i/10^(i+1)), i >= 0,
1/94 = sum (6^i/100^(i+1)), i >= 0, (this sequence)
1/994 = sum (6^i/1000^(i+1)), i >= 0,
1/9994 = sum (6^i/1000^(i+1)), i >= 0, ... - Daniel Forgues, Oct 28 2011
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
FORMULA
From Chai Wah Wu, Apr 26 2024: (Start)
a(n) = a(n-1) - a(n-23) + a(n-24) for n > 24.
G.f.: x*(-5*x^23 - 3*x^22 + 8*x^21 - 8*x^20 + 2*x^19 + 2*x^18 - 3*x^16 + 2*x^15 - 4*x^14 + 4*x^13 - x^12 - x^11 + 5*x^10 + x^9 - x^8 + 2*x^7 - 7*x^6 + 6*x^5 - 5*x^4 + 3*x^3 - 6*x^2 + x - 1)/(x^24 - x^23 + x - 1). (End)
CROSSREFS
Sequence in context: A317969 A281682 A157294 * A307110 A307731 A193080
KEYWORD
nonn,cons
AUTHOR
STATUS
approved