The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A021085 Decimal expansion of 1/81. 8
 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The decimal expansion of Sum_{n>=1} floor(n * tanh(Pi))/10^n is the same as that of 1/81 for the first 268 decimal places [Borwein et al.] Sqrt(999999999999999999) = 9*sqrt(12345679012345679). - Ryohei Miyadera, Ken Hirotomi, Hiroyuki Ozaki and Atushi Tanaka, Jan 16 2006 Equals Sum_{k >= 1} (1/2^k)*(1/5^k)*k. - Eric Desbiaux, Mar 11 2009 REFERENCES J. Borwein, D. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Peters, Boston, 2004. See Sect. 1.4. LINKS Jean-François Alcover, 300 digits of Sum_{n>=1} floor(n*tanh(Pi))/10^n FORMULA G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 9*x^7)/(1 - x^9). - Ilya Gutkovskiy, Jun 21 2016 MATHEMATICA Table[Mod[n, 9], {n, 0, 120}] /. 8 -> 9 (* or *) PadLeft[First@ #, Abs@ Last@ # + Length@ First@ #] &@ RealDigits[N[1/81, 120]] (* Michael De Vlieger, Jun 21 2016 *) PadRight[{}, 120, {0, 1, 2, 3, 4, 5, 6, 7, 9}](* Harvey P. Dale, Apr 07 2019 *) CROSSREFS Sequence in context: A228052 A308072 A084689 * A031006 A031978 A304481 Adjacent sequences:  A021082 A021083 A021084 * A021086 A021087 A021088 KEYWORD nonn,cons AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 19:57 EDT 2020. Contains 336279 sequences. (Running on oeis4.)