The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A021001 Pisot sequence P(2,9). 4
 2, 9, 40, 178, 792, 3524, 15680, 69768, 310432, 1381264, 6145920, 27346208, 121676672, 541399104, 2408949760, 10718597248, 47692288512, 212206348544, 944209971200, 4201252581888, 18693430269952, 83176226243584, 370091765514240, 1646719514544128 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 FORMULA Pisot sequence P(x, y): a(0) = x, a(1) = y, a(n) = roundDown(a(n-1)^2/a(n-2)) = ceiling(a(n-1)^2/a(n-2) - 1/2). Appears to satisfy a(n) = 4*a(n-1) + 2*a(n-2). Conjecture: a(n) = (2+sqrt(6))^n+(2-sqrt(6))^n+(5/12)*sqrt(6)*((2+sqrt(6))^n-(2-sqrt(6))^n). - Paolo P. Lava, Dec 01 2008 MATHEMATICA RecurrenceTable[{a[0] == 2, a[1] == 9, a[n] == Ceiling[a[n - 1]^2/a[n - 2]-1/2]}, a, {n, 0, 30}] (* Bruno Berselli, Feb 04 2016 *) PROG (PARI) lista(nn) = {print1(x = 2, ", ", y = 9, ", "); for (n=1, nn, z = ceil(y^2/x -1/2); print1(z, ", "); x = y; y = z; ); } \\ Michel Marcus, Feb 04 2016 (Magma) Iv:=[2, 9]; [n le 2 select Iv[n] else Ceiling(Self(n-1)^2/Self(n-2)-1/2): n in [1..30]]; // Bruno Berselli, Feb 04 2016 CROSSREFS See A008776 for definitions of Pisot sequences. Sequence in context: A164033 A020728 A107979 * A231134 A038112 A268039 Adjacent sequences: A020998 A020999 A021000 * A021002 A021003 A021004 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)