This site is supported by donations to The OEIS Foundation.



Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020987 Zero-one version of Golay-Rudin-Shapiro sequence (or word). 6


%S 0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,0,0,

%T 0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,

%U 0,0,1,0,0,0,0,1,1,1,0,1,0

%N Zero-one version of Golay-Rudin-Shapiro sequence (or word).

%C This is (1-A020985(n))/2. See A020985, which is the main entry for this sequence, for more information. _N. J. A. Sloane_, Jun 06 2012

%D J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 78.

%D G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.

%H Reinhard Zumkeller, <a href="/A020987/b020987.txt">Table of n, a(n) for n = 0..10000</a>

%H J. Brillhart and P. Morton, <a href="http://www.maa.org/programs/maa-awards/writing-awards/a-case-study-in-mathematical-research-the-golay-rudin-shapiro-sequence">A case study in mathematical research: the Golay-Rudin-Shapiro sequence</a>, Amer. Math. Monthly, 103 (1996) 854-869.

%H James D. Currie, Narad Rampersad, Kalle Saari, Luca Q. Zamboni, <a href="http://dx.doi.org/10.1016/j.disc.2014.01.002">Extremal words in morphic subshifts</a>, Discrete Math. 322 (2014), 53--60. MR3164037. See Sect. 8.

%H Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>

%H A. Hof, O. Knill and B. Simon, <a href="http://projecteuclid.org/euclid.cmp/1104275098">Singular continuous spectrum for palindromic Schroedinger operators</a>, Commun. Math. Phys. 174 (1995), 149-159.

%H L. Lipshitz and A. J. van der Poorten, <a href="http://www-centre.mpce.mq.edu.au/alfpapers/a084.pdf">Rational functions, diagonals, automata and arithmetic</a>

%H H. Niederreiter and M. Vielhaber, <a href="http://dx.doi.org/10.1006/jcom.1996.0014">Tree complexity and a doubly exponential gap between structured and random sequences</a>, J. Complexity, 12 (1996), 187-198.

%H Thomas Stoll, <a href="https://hal.archives-ouvertes.fr/hal-01278708">On digital blocks of polynomial values and extractions in the Rudin-Shapiro sequence</a>, RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2016, 50, pp. 93-99. <hal-01278708>.

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>

%t a[n_] := (1/2)*(1-(-1)^Count[Partition[IntegerDigits[n, 2], 2, 1], {1, 1}]); Table[a[n], {n, 0, 80}] (* _Jean-Fran├žois Alcover_, Dec 12 2014, after _Robert G. Wilson v_ *)

%o (Haskell)

%o a020987 = (`div` 2) . (1 -) . a020985 -- _Reinhard Zumkeller_, Jun 06 2012

%Y Cf. A020985.

%Y A014081(n) mod 2. Characteristic function of A022155.

%K nonn,nice

%O 0,1

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 00:33 EST 2017. Contains 295107 sequences.