login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020985 The Rudin-Shapiro or Golay-Rudin-Shapiro sequence (coefficients of the Shapiro polynomials). 14
1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Other names are the Rudin-Shapiro or Golay-Rudin-Shapiro infinite word.

The Shapiro polynomials are defined by P_0 = Q_0 = 1; for n>=0, P_{n+1} = P_n + x^(2^n)*Q_n, Q_{n+1} = P_n - x^(2^n)*Q_n. Then P_n = Sum_{m=0..2^n-1} a(m)*x^m, where the a(m) (the present sequence) do not depend on n. - N. J. A. Sloane, Aug 12 2016

Related to paper-folding sequences - see the Mendès France and Tenenbaum article.

a(A022155(n)) = -1; a(A203463(n)) = 1. [Reinhard Zumkeller, Jan 02 2012]

a(n) = 1 if and only if the numbers of 1's and runs of 1's in binary representation of n have the same parity: A010060(n) = A268411(n); a(n) = -1 otherwise: A010060(n) = 1 - A269411(n). - Vladimir Shevelev, Feb 10 2016

REFERENCES

J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 78 and many other pages.

J. Brillhart and L. Carlitz, Note on the Shapiro polynomials, Pacific J. Math., 25 (1970), 114-118.

Lehmer, D. H., and Emma Lehmer. Picturesque exponential sums. II, Journal für die reine und angewandte Mathematik, 318 (1980), 1-19.

Shapiro, Harold S., Extremal problems for polynomials and power series. Ph.D. Diss. Massachusetts Institute of Technology, 1952.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

J.-P. Allouche, Lecture notes on automatic sequences, Krakow October 2013.

J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences.

Jean-Paul Allouche and Jonathan Sondow, Summation of rational series twisted by strongly B-multiplicative coefficients, arXiv:1408.5770 [math.NT], 2014; Electron. J. Combin., 22 #1 (2015) P1.59; see pp.9-10.

Joerg Arndt, Matters Computational (The Fxtbook), section 1.16.5 "The Golay-Rudin-Shapiro sequence", pp.44-45

John Brillhart, Patrick Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, (German) Illinois J. Math. 22 (1978), no. 1, 126--148. MR0476686 (57 #16245). - From N. J. A. Sloane, Jun 06 2012

John Brillhart and Patrick Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.

James D. Currie, Narad Rampersad, Kalle Saari, Luca Q. Zamboni, Extremal words in morphic subshifts, arXiv:1301.4972 [math.CO], 2013.

James D. Currie, Narad Rampersad, Kalle Saari, Luca Q. Zamboni, Extremal words in morphic subshifts, Discrete Math. 322 (2014), 53--60. MR3164037. See Sect. 8.

Arturas Dubickas, Heights of squares of Littlewood polynomials and infinite series, Ann. Polon. Math. 105 (2012), 145-163. - From N. J. A. Sloane, Dec 16 2012

A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159.

Philip Lafrance, Narad Rampersad, Randy Yee, Some properties of a Rudin-Shapiro-like sequence, arXiv:1408.2277 [math.CO], 2014.

Mendès France, M.; Tenenbaum, G. Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro. (French) Bull. Soc. Math. France 109 (1981), no. 2, 207--215. MR0623789 (82k:10073).

Luke Schaeffer, Jeffrey Shallit, Closed, Palindromic, Rich, Privileged, Trapezoidal, and Balanced Words in Automatic Sequences, Electronic Journal of Combinatorics 23(1) (2016), #P1.25.

Eric Weisstein's World of Mathematics, Rudin-Shapiro Sequence

FORMULA

a(0) = 1, a(2n) = a(n), a(2n+1) = a(n) * (-1)^n.

a(0) = a(1) = 1, a(2n) = a(n), a(2n+1) = a(n)*(1-2*(n AND 1)), where AND is the bitwise AND operator. - Alex Ratushnyak, May 13 2012

Brillhart and Morton (1978) list many properties.

a(n) = (-1)^A014081(n)  = (-1)^A020987(n) = 1-2*A020987(n). - M. F. Hasler, Jun 06 2012

Sum(n >= 1, a(n-1)(8n^2+4n+1)/2n(2n+1)(4n+1)) = 1; see Allouche and Sondow, 2015. - Jean-Paul Allouche and Jonathan Sondow, Mar 21 2015

MAPLE

A020985 := proc(n) option remember; if n = 0 then 1 elif n mod 2 = 0 then A020985(n/2) else (-1)^((n-1)/2 )*A020985( (n-1)/2 ); fi; end;

MATHEMATICA

a[0] = 1; a[1] = 1; a[n_?EvenQ] := a[n] = a[n/2]; a[n_?OddQ] := a[n] = (-1)^((n-1)/2)* a[(n-1)/2]; a /@ Range[0, 80] (* Jean-François Alcover, Jul 05 2011 *)

a[n_] := 1 - 2 Mod[Length[FixedPointList[BitAnd[#, # - 1] &, BitAnd[n, Quotient[n, 2]]]], 2] (* Jan Mangaldan, Jul 23 2015 *)

PROG

(Haskell)

a020985 n = a020985_list !! n

a020985_list = 1 : 1 : f (tail a020985_list) (-1) where

   f (x:xs) w = x : x*w : f xs (0 - w)

-- Reinhard Zumkeller, Jan 02 2012

(PARI) A020985(n)=(-1)^A014081(n)  \\ M. F. Hasler, Jun 06 2012

CROSSREFS

Cf. A022155, A005943, A014081.

Cf. A020987 (0-1 version), A020986 (partial sums), A203531 (run lengths), A033999.

Sequence in context: A108784 * A034947 A097807 A014077 A174351 A181432

Adjacent sequences:  A020982 A020983 A020984 * A020986 A020987 A020988

KEYWORD

sign,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 31 09:58 EDT 2016. Contains 275972 sequences.